

Jeff Mirocha & Sonia Wharton LLNL Scientists

Lawrence Livermore National Laboratory

Christine Tyler

Teacher

Gale Ranch Middle School

FEBRUARY 12, 2011

LLNL-PRES-470095 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

SCIENCE ON SATURDAY

Most of the energy we use today is produced from fossil fuels

The burning of fossil fuels releases CO₂ into the atmosphere

Increased atmospheric CO₂ may be changing the climate

How will we satisfy humanity's energy needs in the future?

Green, renewable sources will satisfy humanity's energy needs in the future

Green, renewable sources will satisfy humanity's energy needs in the future

Green, renewable sources will satisfy humanity's energy needs in the future

Four Basic Wind Energy Concepts:

- 1. Why the wind blows
- 2. How modern wind turbines harness the wind
- 3. The roles of science and engineering in improving wind energy capture
- 4. What challenges remain for you to solve?

Where Does the Wind Come From?

- 1. Different amounts of solar heating reaching different parts of the Earth
- 2. Rotation of the Earth
- 3. Different surface characteristics and local topography

1. Solar Radiation: Most of Earth's energy comes from the sun

1. Solar Heating: Solar energy is not distributed evenly across the Earth's surface

1. Solar Heating: Different amounts of solar radiation received at different latitudes create heat imbalances that drive circulations

2. Earth's Rotation: Atmospheric circulations transport heat toward the colder poles. Earth's rotation deflects the winds into complicated three-dimensional patterns

2. Jupiter's Rotation: Other rotating planes also develop bands of easterly and westerly moving winds

3. Surface characteristics: Temperature differences between land and sea drive local winds

- During a summer day the land temperature is greater than the ocean temperature
- Warmer air is less dense and will rise (it is buoyant) causing cooler, denser air from the colder ocean to flow inland

Can we capture the winds to make energy?

Break for First demo

Power = $1/2C_PdU^3A$

$$\frac{P}{RT} = d$$

Power = $1/2C_PdU^3A$ = πr^2 $A = \pi r^2$ r = radius of disk = blade length High d COLD Low d WAR

- a) Calm and Hot
- b) Windy and Hot
- c) Calm and Cold
- d) Windy and Cold

Power =1/2C_PdU³A

- a) Calm and Hot
- b) Windy and Hot
- c) Calm and Cold
- d) Windy and Cold

Power =1/2C_PdU³A

- a) Calm and Hot
- b) Windy and Hot
- c) Calm and Cold
- d) Windy and Cold

Power =1/2C_PdU³A

- a) Calm and Hot
- b) Windy and Hot
- c) Calm and Cold
- d) Windy and Cold

Power = 1/2 Gp dU³A

- a) Calm and Hot
- b) Windy and Hot
- c) Calm and Cold
- d) Windy and Cold

Power =
$$1/2C_P dU^3A$$

$$\frac{P}{RT} = d$$

- a) 2 times
- b) 4 times

Power = $1/2C_P dU^3A$

- c) 6 times
- d) 8 times

- a) 2 times
- b) 4 times

Power = $1/2C_P dU^3A$

- c) 6 times
- d) 8 times

- a) 2 times
- b) 4 times
- c) 6 times

d) 8 times

Power = $1/2C_Pd(2U)^3A$

- a) 2 times
- b) 4 times
- c) 6 times

d) 8 times

Power = $1/2C_Pd(2^3U^3)A$

a) 2 times

b) 4 times

Power = $1/2C_Pd(8U^3)A$

c) 6 times

d) 8 times

a) 2 times

Power = 1/2C_PdU³A

b) 4 times

c) 6 times

d) 8 times

a) 2 times

Power = $1/2C_P dU^3A$

b) 4 times

c) 6 times

d) 8 times

- a) 2 times
- b) 4 times
- c) 6 times
- d) 8 times

Power = $1/2C_PdU^3A$

$$A = \pi r^2$$

- a) 2 times
- b) 4 times
- c) 6 times
- d) 8 times

Power = $1/2C_PdU^3\pi r^2$

$$A = \pi r^2$$

- a) 2 times
- b) 4 times
- c) 6 times
- d) 8 times

Power = $1/2C_PdU^3\pi(2r)^2$

$$A = \pi r^2$$

- a) 2 times
- b) 4 times
- c) 6 times
- d) 8 times

Power = $1/2C_P dU^3\pi(2^2r^2)$

$$A = \pi r^2$$

- a) 2 times
- b) 4 times
- c) 6 times
- d) 8 times

Power = $1/2C_PdU^3\pi(4r^2)$

$$A = \pi r^2$$

- a) 2 times
- b) 4 times
- c) 6 times
- d) 8 times

Power = $1/2C_P dU^3\pi(4r^2)$

$$A = \pi r^2$$

a) 8 times

b) 16 times

c) 32 times

d) 64 times

Power = 1/2C_PdU³A

a) 8 times

Power = $1/2C_P dU^3A$

b) 16 times

c) 32 times

d) 64 times

a) 8 times

Power = $1/2C_PdU^3\pi r^2$

b) 16 times

c) 32 times

d) 64 times

a) 8 times

b) 16 times

c) 32 times

d) 64 times

Power = $1/2C_Pd(2U)^3\pi(2r)^2$

- a) 8 times
- b) 16 times
- c) 32 times
- d) 64 times

Power = $1/2C_Pd(2^3U^3)$ $\pi(2^2r^2)$

- a) 8 times
- b) 16 times
- c) 32 times
- d) 64 times

Power = $1/2C_Pd(8U^3)$ $\pi(4r^2)$

- a) 8 times
- b) 16 times
- c) 32 times
- d) 64 times

Power = $1/2C_P d(8U^3)$ $\pi(4r^2)$

Why are modern wind turbines so tall?

Wind turbines blades are uniquely shaped

Wind turbines have gearboxes, generators and other control mechanisms in the nacelle

- Generator blades turn the generator which produces energy
- "Yaw" positions the rotor into the wind
- "Pitch" controls the angles of the blades

Wind turbines produce power according to a power curve

The flow at wind turbine heights is not well understood

Demo 2: How do scientists measure the wind far above the

ground?

We use a sonic anemometer which measures both wind speed and direction at 10 times a second! That is fast enough to measure turbulence in the wind.

LET'S COLLECT SOME DATA!

Other Instruments Used

We also use a more sophisticated instrument called the LIDAR reaches 200 a LIDAR which reaches higher

winds

At LLNL, we are taking atmospheric measurements and modeling wind to understand wind flow over complex terrain

Supercompute rs

Wind speed, direction, and

turbulence

Surface energy exchange

Atmospheric modeling

Models: Observations coupled with models can tell us where the good wind resources are.

Conservation of momentum

$$\frac{\partial \vec{V}}{\partial t} = -(\vec{V} \cdot \nabla)\vec{V} - \frac{1}{\rho}\nabla p - \vec{g} - 2\vec{\Omega} \times \vec{V} + \nabla \cdot (k_m \nabla \vec{V}) - \vec{F}_d$$

Conservation of energy

$$\rho c_{\vec{v}} \frac{\partial T}{\partial t} = -\rho c_{\vec{v}} (\vec{V} \cdot \nabla) T - \nabla \cdot \vec{R} + \nabla \cdot (k_T \nabla T) + C + S$$

Conservation of mass

$$\frac{\partial \rho}{\partial t} = -(\vec{V} \cdot \nabla)\rho - \rho(\nabla \cdot \vec{V})$$

Conservation of H₂O (vapor, liquid, solid)

$$\frac{\partial q}{\partial t} = -(\vec{V} \cdot \nabla)q + \nabla \cdot (k_q \nabla q) + S_q + E$$

Equation of state

$$p = \rho R_d T$$

Where is it windiest in California?

How do the winds in California compare to the rest of the US?

Challenges

- Transmission and storage
- Measurement and forecasting
- Efficiency and engineering of wind turbines
- Balancing with other renewable sources
- Diverse, innovative, educated people (you!)

Careers in Wind

- Meteorologist
- Computer modeler
- Engineer
- Field technician

What Did We Learn?

- 1. Why the wind blows
- 2. How modern wind turbines harness the wind
- 3. The roles of science and engineering in improving wind energy capture
- 4. The challenges that remain for you to solve